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Application of Mixed H,/H, Optimization

Abstract

A nonconservative optimization technique is utilized to
examine the problem of minimizing the 2 norm of one transfer
function subject to an x-norm bound on another transfer
function. For single exodenous input/single exogenous
output systems this nonconservative mixed solution is shown
to be up to 5% better than a previous technique in a
specific example. For single exogenous input/two exogenous
output systems the mixed solution is shown to be up to 27%
better than a previous technique for a specific example.
Finally, a two exogenous input/two exogenous output
practical system is examined to demonstrate the utility of

this mixed optimization technique.

viii




Application of Mixed H,/H, Optimization

Chapter I. Introduction

1.1:. Background

”%he designer of a Single-Input-Single-Output (SISO) or
Multiple-Input-Multiple-Output (MIMO) system must contend
with two major factors in the design process. First, the
design must minimize the energy of the output errors in the
face of input noises. Second, the design must minimize the
output errors given a non-noise bounded energy input that
would affect robustness. Noise sensitivity will be called
performance in this work, and using the LQG techniques in
modern control theory is easily handled. LQG by itself
however usually exacerbates robustness problems. LQG/LTR
addresses robustness in an unstructured manner, but an
acknowledged shortcoming in modern control design has been
the lack of visibility into performance/robustness trade-
offs.

Recent efforts have focused on characterizing this
problem with the 2-rorm as a measure of performance and the
w-norm as a measure of robustness. These are usually
referred to as H,/H, Optimization problems and they can be
formulated in a variety of different ways. The formulation

for this thesis can be stated as maximizing performance at a




given robustness level. Numerous approaches to this problem
currently exist, but only one is non-conservative. The non-
conservative approach was first forwarded in 1991 by Ridgely
[1] and will be referred to as the Mixed Solution throughout
this thesis.

The Mixed Solution has only recently become available
and allows H,/H, trade-offs to be made for a wide class of
systems. The robustness design parameter :'an be used to
handle a variety of problems such as unmodeled dynamics,
sensor bias and disturbances, excessive gain scheduling, and

input disturbances.

1.2 Purpose

The purpose of this thesis is to demonstrate the use of
the Mixed Solution and compare results to other techniques.
First, the Mixed Solution will be compared to the H, Central
controller for a system with a single exogenous input and a
single exogenous output ( I10). Then, the Mixed Solution
will be compared to the technique forwarded by Bernstein and
Haddad [5] for a system with one exogenous input and two
exogenous outputs (1I20). Finally, a physically motivated
system with two exogenous inputs and two exogenous outputs
(2120) will be examined using the Mixed Solution to
demonstrate the practical aspects of this technique (no
other two-in two-out techniques exist for comparisonj).

Various plants will be used.




1.3 Overview

In Chapter 2, various aspects of control theory and the
role of H, and H, theory are discussed. In Chapter 3, the
procedure and analysis techniques required to obtain a Mixed
Solution are discussed. 1In Chapter 4, problem synthesis,
description, and results for the 1110 system are discussed.
Likewise in Chapter 5, the 1120 system is covered and in
Chapter 6 the 2I20 system. Chapter 7 contains a summary and
conclusions followed by recommendations for further study.

The software package PRO-MATLAB was used for this

thesis. FORTRAN 77 (UNIX) was also utilized.




Chapter II. Mixed H,/H, Control Theory

2.1 Sinqular Values, H, Norm, and H, Norm

The basic analysis tool in multivariable control design
is the singular value versus frequency plot. The singqular

values of a matrix A are related to the eigenvalues of A as

follows
2.1
0,(A)=[A;(A%A)]1"? (2-1)
with o;(A) = ith singular value
A, = ith eigenvalue
A* = complex conjugate transpose of A
A g cm

The largest singular value is denoted o and the smallest is
denoted ¢. These two scalars are a measure of the size
(gain) of a transfer function matrix at a given frequency.
Thus, 0 and ¢ are frequency dependent. In SISO systems, O =
o and a plot of O verses frequency is just the Bode
magnituie plot. The 2-norm is related to the area under the
o vs w (frequency) curve and is given by

1 (- (2.2)

160 : - —— [ _tr (6" (jw) Gljw) ) dw

By Parseval’'s Theorem it can be seen that this is the
transfer function’s total energy output. This nicely

4




characterizes the energy of a system in the presence of

white noise.

The x-norm of a transfer function is given by

IG(jw)[.=sup ¢ [G(jw)] (2.3)
w

and is a measure of the maximum gain of the transfer
function. Thus, a singular value plot with a large spike,
and hence large x-norm, would not be considered robust at
the spike’s frequency because any excitation at the
frequency of the spike causes a potentially disastrous gain.
Another way of looking at the x-norm this is through the

small gain theorem. Suppose we have

Figure 2.1 Small Gain Block Diagram
with G and A € RH,. Then this system is closed loop stable

if

1A IGI. < 1 (2.4)




If [Gl. < y then

1AL < _‘1_ (2.5)

is sufficient to guarantee stability of the system. Thus,
the smaller y (|G}.) is, the larger JA}, can be and still
have guaranteed system stability. If we think of A as a
system disturbance or uncertainty and G as a nominal closed-
loop system, then keeping y low will maximize the system’s

disturbance tolerance or robustness.

2.2 Motivation and Characterization

Any physical system will have noise and uncertainty in
it. Thus, it makes sense to want to minimize the system’s
sensitivity to noise and maximize its robustness. 1In this
thesis, this problem, called mixed H,/H., optimization, is
formulated as:

infimize [T,[l, subject to the constraint
K stabilizing that [Tel. s v
With a system as shown in Figure 2.2, T,, indicates the z to

w transfer function while T, the e to d transfer function.




Figure 2.2 Standard Problem Block Diagram

The w input will normally be white noise while the d
input will be bounded energy disturbances. The following

definitions are helpful:

Yo = inf [Tl
K stabilizing
<, = inf T},
K stabilizing
K,ope = K required to achieve «,
Y2 = |T.!. when K = K,

For clarity in the following discussion, consider T,,6 =
T.. First, it can be seen that minimizing |T,J), will

produce a system of finite (and probably low) bandwidth in




order to minimize the area under the plot. However,
minimizing | T.l. typically produces a closed-loop system of
infinite bandwidth, as the low frequency energy is forced to
higher and higher frequencies. Thus, mixed H,/H,
optimization has competing objectives.

When |T,l, is at «,, the resulting controller (K,,.) is
unique. Thus, K, wWill produce a finite [Tul. (v,) which is
as large as [T, }. will ever get in the mixed H,/H, problem.
As |T.l. approaches y,, IT,,l, goes to infinity since the
closed-loop bandwidth (and thus area under the curve)
typically becomes infinite. A typical trade-off would look
like that in Figqure 2.3.

No matter how large y gets, |T.l. will never exceed vy,.
In fact, it really makes no sense to talk about mixed H,/H,
solutions with y>y, since there is no trade-off, and the

solution is just trivially K The above plot has been

20pt
shown [1] to be monotonically decreasing for the Mixed
Solution.

Of key importance is that, for y>y,, the controller
that gives |T.l. <= Y 1s not unique. An infinite number of
stabilizing controllers can achieve |Tl. s y. Thus, for
Y.<Y<Y,, the family of stabilizing controllers will contain
a controller such that |T,,], is a minimum given |T.}. s Y.
In (1:120) it is shown that this minimum is achieved with a

controller such that [T, l. = y. The curve given by a plot

such as in Fiqure 2.3 is, for the Mixed Solution, a true




trade-off; that is, for a given y level (and controller
order), no other controller exists that will give a lower
§T,.l,. Currently, only the Mixed Solution can make this
claim, since other methods involve overbounds of varying

tightness.

2 Norm

1 L 4 1 A

Y2

Yo

Infinity Norm

Figure 2.3 Typical Performance/Robustness Trade-off

2.3 Mixed H,/H, Control Theory (1]

Recall that the mixed H,/H., problem is
infimize 1T, ], subject to |T.l. sy

We are trying to find a controller K that accomplishes the
above.
This is a linear time invariant feedback control

system. Also note that this may be an output feedback




controller or a full state feedback controller. The
exogenous inputs in the d vector represent commands,
disturbances, etc. into the plant P. The regulated output
in the e vector is the system response that will be
associated with the x-norm. The exogenous inputs in the w
vector represent white noises coming into the plant P. The
regulated output in the 2z vector is the system response that
will be associated with the 2-norm. The output y is fed to
the controller K which generates the u input into P. The
plant can be represented in partitioned transfer function

form as

p b P
ed ew cu (2.6)
P = zd sz qu
PYd wa Pyu
which yields:
e =Pyd+ P, w+ P,u (2.7)
z=P,d+ P, w+ P, u (2.8)
(2.9)

y = P,yd + B w + P,u

Using a lower linear fractional transformation, the transfer

10




functions T,, and T, are:

Tpy = P,, + P K [I-P, K1 ' P, (2.10)

zw zw

2.11
Toq = Pog + P, K [I-P, K] ' Py ( )

Note that the characteristic equation and hence system
stability is determined by the [I-P,K]' term. There are, of
course, "cross transfer functions" T, and T,,, but neither
of them is directly addressed in the mixed problem. They
really don’t need to be included, since any concern about
these cross transfer functions should be taken care of
through modeling.

A state space realization of P is given by

A Bd Bw Bu
P Ce |Ded Dow Doy (2.12)

) CZ Dzd Dr- Dzu

CY Dyd Dyv Dyu

which results in:
. (2.13)
x=A, +Bd+ B,w + B,u

(2.14)

e =C,x + D, d+ D, w+ D,u

11




(2.15)

N
"

C,x + D,yd + D, w + D, u

(2.16)

<
it

C,x + Dyd + D, w+ D, u

Note that D,, must be zero or the 2-norm of T, 6 will be
infinite for any controller. D, and D, are assumed to be
zero for convenience. Further, the plant must satisfy the

following conditions:

1) (A,B,) stabilizable and (C,,A) detectable
2) D, D, full rank and D, D, full rank

eu

3) D, D, full rank and D,, D, full rank

4) A-j.,I B, full column rank for all w
ce Deu

5) A-3j.I By, full row rank for all w
Cy Dy

6) A-j.1 B, full column rank for all w
CI DZ\!

7) A-j,I B,,] full row rank for all w
G yol

Condition 1 must be satisfied or there exists no stabilizing
controllers. Conditions 2) through 7) come from various
aspects of the individual H, and H. problems which are

assumed to be met in the mixed H,/H, problem [1].

12




The compensator K is given in state space by:

. (2.17)
X .=A.X.+B_.y

Again, to avoid an infinite |T,,|,, D. must equal zero. This
does not result in loss of generality [1]. This thesis
assumes that the order of the controller equals the order of
the plant. It as been shown [4] that the optimal controller
has an order higher than that of the plant (possibly
infinite). It is often true that higher order controllers
gain little in performance.

Closing the P-K loop results in:

.. - - (2.19)
X=AX+Byd+B_w
. (2.20)
e=C,X+D,  w
~ 2.21
z=C,X + D,,d (2.21)

where

13




- | A B,C. (2.22)
4= B.c, A,
- _' B, | (2.23)
Bd - Bchd
= _r B, | 2.24)
B, = B.D,, (

(2.25)

(2.25)

Note that closed loop system stability is determined by A.

Now,

cTa 2.27
1,05 = tr 10,67C,1 ( )

where Q, is the solution to the Lyapunov equation

- o 2.28
AQZ"'QZAT"’B'BHT:O ( )

Also, JT.l. s vy if there exists a Q, = QI =2 O satisfying

- - o~ o 2.29
AQ_+Q0.AT+y 20 CJC 0. +B4B] =0 ( )

14




with A stable. A is stable if (A, B,) is stabilizable.
From here, the problem can be cast as a Lagrange
Multiplier Problem with J = |T,l? = tr [Q,CI¢,] (minimizing
the square of the function is the same as minimizing the
function). The constraints are the Lyapunov Equation 2.28

and the Ricatti Equation 2.29.

s N cr s s 2.30
9=tr[0,6C,1 + tr{1AQ,+0Q,A"+B,B1X} ( )

ver{1 A0+ 0. A"y %0.C1C,0.- BATIY)

The first order necessary conditions for a minimum are found

by evaluating.

(2.31)

These necessary conditions represent a set of 7 matrix
equations. These matrix equations, however, do not lend
themselves to an immediate solution. Numerical techniques
must be used. The particular technique used in this thesis

is covered in Chapter 3.

15




Chapter III. Analysis and Procedure

3.1 Solution Technique [1]

The objective is to generate a |T,,|, versus |T,}l. curve
for a given system. This entails selecting a y (y, < y <
Y,) and solving the mixed problem. The 7 recessary
conditions mentioned in Chapter 2 are coupled and highly
nonlinear. No known analytic solution exists, so a
numerical technique must be used.

In order to facilitate a numerical solution, the
performance index is changed to

o .7 2.36
J=(1-p) trl0,C]C, 1 +utriQ.CJ2. 1 ( )

where pn is a numerical convergence parameter. At u = 1, the
problem reverts to the minimum entropy protlem with a well
known and easily obtainable solution. 1In {1:134], it is
shown that as pu~ 0 the solution does converge to the mixed
H,/H, solution.

The choice of numerical technique is critical, since
there are a large number of unknowns, the problem is highly
nonlinear, and computation of second derivatives (fourth
order tensors) is unwieldly. In connectioz with research in

this area, a Davidon-Fletcher-Powell (DFP) algorithm had

16




already been coded up in Fortran. The code was modified to

include a Ricatti solver and to allow for increased problem
size.

The DFP problem is formulated (8] as minimizing a scalar
function F given a vector of unknowns X. The direction, S,
in which to move the unknowns is given as a function of the

gradient VF(x)

S=H-vF(Xx)

where H is the second derivative matrix. H does nct have to
be analytically derived; it c~ . .. approximated adequately.
The step size K is ¢ .tzrmined by minimizing F(X + KS) by
numerical means. Equality boundaries are enforced by
artifically setting F(X + KS) to a large number (10%) if
the boundary is violated. This has the effect of causing
the step to back away from the boundary.

In this particular problem, the boundary constraints
are determined by four of the seven necessary condition

equations

17




(3.1)

ATX+XA+(1-p) ETC,=0 (3.2)

A0 +0Q. A y?0.GTC,0.+B,87=0 (3.3)

A4y 20.6.7C, 1T Ty 20.CTC ST (3.4)
[A+y 20,CJC1"Y+Y [A+y20.C/C,]1 +pC C,=0

As shown in [1:143,144] the Q,, Q., X and Y solutions must
be positive semidefinite. Also, for u#0, (A + y? Q. CIXC.) must

be stable. Note that A contains the controller A_, B_, and

c?

C. matrices, and thus contains all the unknowns. The number

of unknowns 1is
(# states)? + (# inputs)(# states) + (# outputs) (#states)

Convergence is checked by observing the change in F with
respect to the last iteration’s F. With & as the

convergence criteria, this can be formulated as

VETHYE o (3.5)
IF{x) |

The flow diagram for this algorithm is given in Figure 3.1.
This problem does not have guaranteed convexity, so a good
starting point is critical. The starting point here is a

guess at the controller. 1In addition to satisfying |T.l. s

18




Y, the start point controller must satisfy Equations 3.1
through 3.4. Typically, when starting a new problem, this
would be chosen to be the H, central controller, although

any admissible "nearby" controller is acceptable.

19




Initialize
X.S

v

Select Step to
Minimize F (X +KS)

Check Convergence

Update H

Y

Update S

Figure 3.1

20
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3.2 Procedure

Matlab is used to initially characterize the system by
finding y,,y,, and x,. Normally, a y slightly greater than
Yo is chosen, and then Matlab can be used to generate the H,
central controller as a start point. This controller is
then transferred to a Fortran input file for use by DFP. Of
note is that the problem is easier to solve at y close to vy,
when using "overbound" start points, because the start point
x-norm is usually far less than the y that generated it.
Near y,, the slack in the [T, |sy portion of the problem is
getting much tighter (in fact going to zero). This means
that the start point becomes increasingly critical as y-y,.
At each y level, the u that is initially set 1s a guess that
takes into account how close the starting point is to the
minimum entropy solution and how much p can be decreased
from the starting point and still get numerical convergence.
Starting with the H, central solution, the first DFP run
would probably use .5<u<.99. The controller output from
that run is then used in a subsequent DFP run at a lower u.
The amount that u can be decreased between runs seems to
depend largely on the closeness to y,. Near y,, u might be
decremented as 0.9, 0.7, 0.5, 0.4, 0.3, 0.2, 0.1, 0.01,
whereas near y,, u might be decremented as 0.5, 0.1, 0.01,
0.001. This is, of course, problem dependent, and one must
keep in mind that the problem may be changing drastically

with changes in pu. From the problems that were done in
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connection with this thesis, a p of about 0.001 is adequate
for convergence to the mixed solution at a given y level.
This gives |T.l. = Y to about four decimal places and |T,.l,
unchanging to about 7 decimal places. An advantage to
starting the y sweep near y, and moving toward y, is that
subsequent y levels can be started using the converged
output controller from the previous y level (|T.l.s7 and K
stabilizing is automatically satisfied). Thus, the H,
central controller need not be generated for each y level.

A procedural flowchart is given in Fiqure 3.2.
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set y

v
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Place Controller
in L. file
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¥

Verify
nTedl”:‘Y

Y

( Record Controller

Figure 3.2 Procedural Flowchart
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For a given physical system, the block diagram for the

system is manipulated into the state space form:

x=Ax + Byd + B,w + B,u (3.6)
e=C,x + Doyd + D, w + D, u (3.7)
z=C,x + D,qd + D,,w + D,,u (3.8)

(3.9)

y=C,x + Dyd + D, w + D, u

There are several tuning parameters available for the
designer to control the optimization. The P matrix elements

By, B,, Coy C,y Dy, D D.,,, and D,, are selectable and have

yw/?

the following interpretation:

24




[
0
S
o
Q
N
3
<
w
“~ )
Q U
2 8
N Q
N
g 3
SR
'i-*
3 Q
T
g 9
= S
0 o)
Q 2
Lol
‘AA Bd Bv Bu
H, state penalty— C,| O O D, +—H.,control penalty
H, state penalty—- C,| 0 0 D, +H, control penalty
Cy|D,y D,, O
i T
o 3
o
o d
Q3
N
SIS
2 %
& N
o o)
wooon

From here, an input file is created (see Appendix A for an
example). The DFP program has all real numbers in DOUBLE
PRECISION format. For this thesis, all DFP runs were made

with the following parameters:

Q, positive definiteness boundary = -10"%°
Q. positive definiteness boundary = -10-%°
X positive definiteness boundary = ~10°1°
Y positive definiteness boundary = -1071°
[A + vy, Q, CTC,] stability boundary = +10°°
Convergence Criteria & (Checkstop) = +10°°
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Chapter IV. One Exogenous Input One Exogenous Output

4.1 Problem Synthesis

This system has one exogenous input and one exogenous
output (1I10). 1In standard form, it is represented as in

Figure 4.1:

d —p — ¢

A Bd Ru
p= Ce o Deu
Cy Dyd o
Figure 4.1 1110 Standard Form

Thus, the mixed problem is

inf JT.l, subj-ct to |T.l. s ¥
K stabilizing
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so that we are expecting both bounded energy inputs and
noise inputs to be contained in d and we are looking at
performance and robustness with respect to the same transfer
function. 1In other words, performance with a guaranteed
level of robustness, with respect to the same transfer
fgnction.

This is equivalent to

inf | T,.0, subject to [T.l. s v
K stabilizing

with T,, = T,,. An associated block diagram for such a

system is shown ii Figure 4.2.
| g
d » B,
— i B, G,
A
y
Ce
)
r——" Deu é ’ ¢
K

Figure 4.2 System Block Diagram
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4.2 Background

Prior to the Mixed Solution, the best solution to this
problem was the Minimum Entropy or H, central solution. 1In
this chapter, the Mixed Solution will be compared with an
H, central solution for an example system. It has been
shown [6:12] that as y — <, the Minimum Entropy (ME) and the
H, problem are equivalent. For y less than «, |T,l,. with
the ME controller is less than y and [T.l, with the ME
controller is an upper bound on the minimum JT,l,. This
problem has an analytic solution. Changing the block

diagram to that in Figure 4.3, K is the lower linear

fractional transformation of J and Q, where

A LK Ky SO
1 - -1 | _Yuy ui
J=| -KJ o s, '[Joy Joi]
Kc] Sy O

J is found by solving a pair of algebraic Ricatti
equations (with both solutions positive semidefinite). The
only constraint on Q is that it be stable and that JQj. < y.
Thus, a K such that [Tl s y is not unique. However, in
[6:19-22) it is shown that the ME controller is just J with
Q=0, and hence the name H, central. The ME controller then

is
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Ay
-K

_Ke

As noted in Chapter 2, this K is the same as the Mixed
Solution with p = 1. Of key importance is that the ME

solution is really only applicable to 1I10 systems. 1

d —» —— ¢
P
u y
g
J
—
0 i
Q

Figure 4.3 Extended Standard Form
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4.3 Description

The system chosen was the same as in [1]. It is a
third order, unstable, minimum phase system, with
Al' kz = ‘.6812 t j 1-182
A, = +.9549
zeros at -1.1990
- .0490
The open loop singular value (SV) plot is shown in
Figure 4.4. Note the lightly damped zero. The state space

matrices are:

-.3208 -.4565 1.266
A=| 1.445 -1.049 1.208
-.1288 .6744 1.032

.0488 -.4275
By=|.3608] B, =|-.4470
.3564 -.9172

C,=[.9420 .0144 .1187]
C,=[-1.557 -1.943 -.0914]
D 4=[.5185]

y

D, =[1.3575]
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Figure 4.4 o-Plot of the Open Loop System

Looking at the closed loop system using the optimal H,
controller, it can be seen in Fiqgure 4.5 that an infinite
bandwidth system results with y, = 2.1426. As shown in
Figure 4.6, thc controller also has infinite bandwidth.
Closing the loop with the H,,, controller results in a
higher x-norm and a more typical finite bandwidth singular
value plot (Figure 4.5). This controller results in y, =
4.163 and x, = 3.248. Figqure 4.6 shows that this controller
has finite bandwidth. Of note is that both controllers have
a spike corresponding to the lightly damped zero in the

plant.
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4.4 Results

The Mixed Solution for this system was determined using
the procedure outlined previously. As shown in Figure 4.7,
the Mixed Solution is clearly better than the H, central
solution. The maximum difference between the two solutions
is about 5 percent at a vy,;, of about 2.5. As Figures 4.7
and 4.8 show, the two solutions converge as y-y, or y-c.
Table 4.1 shows the comparison for selected y,, levels.
Note that care must be taken in such a table because y,, =
[Tl but 1 Toule < Ys cenrmar S© that for a fair comparison
either y,.;x Or Y4 cenrra Should be adjusted such that |Tyl. is

the same.

Mixed (~) and Centra] (--)

Ted 2 Norm
(9,

2 2.5 3 3.5 4 4.5 5

Ted Infinity Norm

Figure 4.7 Comparison of Mixed and Central Controllers
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Figure 4.8 Mixed and Central 2-Norm Difference

Table 4.1. Comparison of Mixed vs Central

Mixed H, central )
Ymix | Teal | Tl Ve | Teal - | Teal ;
2.15 2.15 27.6012 2.150 2.15 27.601
2.5 2.5 4.3536 2.540 2.5 4.5993
2.8 2.8 3.6345 2.9608 2.8 3.7956
3.7 3.7 3.2594 5.807 3.7 3.2765
4.163 4.163 3.248 oo 4.163 3.248

Complete numerical data for the above curves can be found in
Appendix B.

Figure 4.9 shows the closed-loop Mixed Solution results
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for ym,x = 2.15, 2.5, 2.8, and 3.7 as well as the H,,, and
H,,,x curves. 1In Figure 4.9 the arrow show§ decreasing y.
The progression from H,,. to H.,. with decreasing y is
clearly evident. Figqure 4.10 shows the closed-loop H,
central solution results following the same trend from H,,,
to H,,.. Note that at H,,., which corresponds to y = «, the
bandwidth is about 1 rad/s, while at y = 2.15 the bandwidth
is about 300 rad/s. The bandwidth goes to infinity with
just a small change to y = 2.1426, illustrating the highly

non-linear nature of the problem.
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Figure 4.9 o-Plot of Mixed Solution T
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Figure 4.10 o-Plot of H, Central Solution T,

In Figure 4.11, the Mixed Solution controllers are
shown (solid line shows H,.,, and H,,.) for the same y levels
as before. Again, with the arrow in the figure showing
decreasing y levels, the progression from H,,. to H.,. 1is
clearly evident. Figure 4.12 shows very similar results for

the H, central controller.
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Comparing the Mixed Solution and H, central solution at
specific | T.l. levels reveals some of the differences
between the two solutions. As shown in Fiqures 4.13, 4.14,
4.15, and 4.16 there is virtually no difference in the
controllers below 1 rad/s. 1It is at the higher frequencies
that the differences become apparent. The roll-off appears
to be similar at high frequencies, but the Mixed Solution
roll-off appears offset downward. The amount of off-set is
greatest in the |T,l. = 2.5 to 2.8 range, which corresponds
to the area of greatest [T, ], difference between the two
solutions. The solutions become very similar at y near vy,

and y near y,, as expected.
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Figure 4.13 o-Plot of Controllers (x-norm = 3.7)
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Looking at the closed loop comparisons in Figures 4.17,

4.18, 4.19, and 4.20, we see a very interesting phenomena.

At low frequency, the curves are flat (at the |T.,l. value),

and then a roll-off begins near 1 rad/s.

At this roll-off,

however, the Mixed Solution appears to make a sharper corner

than the H, central solution and its singular value plot

then passes under the H, central curve.

is especially evident in Figures 4.18 and 4.19.

This characteristic

Thus, the

mixed solution has a lower 2-norm because it is trading low

frequency gain for high frequency gain to lower the overall

area under the curve. The Mixed Solution is able to do this

because it can make a sharper corner to the roll-off. 1In
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fact, in [4], it is conjectured that the optimal order
controller would have a discontinuous corneér. This would

take an infinite order controller.
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Figure 4.17 o-Plot of T, (-norm = 3.7)
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Thus for the 1I10 system the Mixed Solution is superior
to the H, central solution. As expected, the two solutions
converge at y, and y,. The difference between the two
solutions seems to manifest itself as a sharper corner to
the roll-off in the T, o-plot. This difference is greatest
for y’s roughly mid-way between y, and y,. The next level
of problem is the 1120 system that will be covered in

Chapter 5.
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Chapter V. One Exogenous Input Two Exogenous Outprts

5.1 Problem Synthesis

This system has one exogenous input and tw~ zxogenous
outputs (1I120). In standard form it is represented as seen

in Figure 5.1:

Iy -
W ——P P 3 Z
____,.
u y
K ¢
A BV Bu
¢,| O D,
P=1c,| o b,
C, D, O

Figure 5.1 1120 Standard Form

Thus, the mixed problem is

inf 1 T, , subject to |Tul. s Y

K stabilizing
so that we are modelling both bounded energy inputs and
noise inputs in w while evaluating the performance and

robustness with respect to separate outputs. A practical
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motivation for such a problem might be an active control
surface on an airplane; the motion of the airplane would
respond to actuator noise (or perhaps stabilizing high
frequency commands) as well as typical step flight path
commands coming into the control surface. Then T,, and T,

mighit represent high and low frequency models, respectively.

5.2 Backqground

The Mixed Solution has full capability to handle a wide
range of different models resulting in a 1120 system.
However, prior to the Mixed Solution the only solution to
this problem was Bernstein and Haddad’'s (B & H) approach
forwarded in [5]. This approach uses an overbound technique
and is somewhat restrictive, as will become apparent. The
Mixed Solution will be compared with a B & H solution on an
examrple system shown in [5]. The general B & H block

diagram is shown in Figure 5.2.
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€, Z, w, €, Z, W2
P A
Pe2 P22 Pwi p; L | 1P P2

Figure 5.2 System Block Diagram

Briefly reviewing the B & H approach, the equivalent

B & H state space representation is

A D, B

E.l O E,_
Pe | o E

c | b, o

and the following coupled set of Ricatti equation must be

solved:
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0=A0+0AT+0Q (Y 2R,.-£) 0+V, (-1)

O0=(A+Y2[Q+01R.) "P+P(A+y2[0+0]R,.) ~(5.2)
-STPEPS+R,
O=(A-ZP+y?0QR,.) 0+0(A-ZP+y20R )T (5.3)

+0 (Y 2(R,.+B2STPLPS)) §+080

where

v,=D,D,”

R, =E/E,
R,=E,E,
R.=EuE,.
L=B(E,;E,)BT
£=c™(p,p)) C
E,.=BE,
S=(I+P%y20p)?

Note that the H, control penalty E,, must be a scalar
multiple of the H, control penalty. The general B & H
equations 5.1, 5.2, and 5.3 are not analytically solvable,
and thus far no one has numerically solved them either.
However, with B = O they are solvable by Homotopy
Techniques. This is the case where there is no H, control
penalty, and in the example problem presented in [5]) this is

what was chosen. The Ricatti Equations then become:
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0=A0+QAT+Q (Y 2R, .-Z) 0+V, (5.4)

O0=(A+y2[Q+JIRLP+P(A+y2[0+0]R,) (5.5)
~PLP+R, .
O=(A-ZP+Yy2QR,,) O+0(A-ZP+y2QR T (5.6)

+0(y %R, 0+0%80

where

B_=QCT(R, 1
C.=-(R,) 1BTP
A_=A+BC.-B.C+Y?QR,,

Egqn 5.4 is uncoupled and may be solved immediately. A
direct Homotopy approach will solve Equations 5.5 and 5.6
for y* < y < «x where y, < y* < y,, but y* may be
substantially larger than y,. Therefore, a full |T,l, Vs
|T..l. plot cannot be generated. A direct Homotopy algorithm
was coded in Matlab M.file form (BH.M in Appendix A), but it
was not possible to get y* very low for any example tried.

A different algorithm, forwarded in ([3], was
subsequently coded up (BLACK.M in Appendix A) and found to
be much better. The Ricatti equations for this algorithm

are:
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5.7
O=ATP,+ P,A-P,LP, +R, (5-7)

0=(A-ZP)(,+0,(A-ZP)T+0EQ (5-8)
0=A0+QAT+0(Y2R,.-2) 0+V, (3.9}
0= (A+y2[Q+01R,.) TP+P(A+Y 2 [Q+0] R,.) (5.10)
-PELP+R,
_ 2 (0 Ox
0=(A-ZP+y? (0+ —5) Ril) Or. (5.11)

+§K01 (A-2P+Y_2 (Q+ %Rln) *020

The flowchart diagram for this algorithm is shown in
Figure 5.3. Of note is that the only input required in this
algorithm is y. The algorithm generates its own start point,
so "solution cascading” going from a higher to a lower y is
not required. This algorithm was used to generate all B & H

solutions in this chapter.
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findP_ (5.7)

I
A |

find 9, (5.8)

v

select y

'

find Q (5.9)

solve (5.10) for
PK#I Wl‘.h 0=0K

solve (5.11) for
Q,; with Qg and

Pra
P!

check convergence o = &
of Q and P K= Kl

converged

compute
controller

Figure 5.3 Black Algorithm
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5.3 The Dual

For completeness, the dual of this prbblem must be
covered. This problem, as represented in Figure 5.4, was
first forwarded in [7]. It was subsequently shown in [2] to

be the dual of the BH problem.

d —p» ———3» €
w—3pn T
—
u y
K ¢

Figure 5.4 Dual Standard Form
This problem is formulated as

inf §T.Il, subject to |T ). s ¥

K stabilizing
so that we are modelling bounded energy inputs in d and
noise inputs in w, with all outputs modelled in e.

The mixed state space representation is

A|lBy B, B,
p=| ¢| 0 o0 b,
C,|D,gy D, ©
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while the equivalent B & H state space is

Similar to the original B & H problem, D,, must be set to

zero to obtain the following set of Ricatti equations:

O0=ATQ+QA+0Q(Y?*V,,~Z) Q+R, (5.12)

0= (A+y2V, . [0+0]) P+P(A+y 2V, [0+0]) T (5.13)
+PEP+V,

0={A-PE +y2v, 0)T0+0 (A-PE +y 2V, Q) (5.14)

+0(y2v,,) §+0%0

where all definitions are the same as before, but with the
addition of D, D,,, and V,, (V. = D, D,2). A direct
Homotopy algorithm in Matlab M.file form (BHD.M in Appendix
A) was coded, but no comparisons with the Mixed Solution

were done for this dual problem.

5.4 Description

The system chosen was the same as in [5). It is an
eighth order, neutrally stable, non-minimum phase system,

with:
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A, A\, = -.037 £ j 1.85
Ayy Ay = =.028 ¢ 3 1.41
Ass A = -.015 £ § 7.65
Ay Ag =0, 0

zero at 1.0

In [5], it is said that this represents a physical system
which has coupled rotating disks with noncolocated sensors
and actuators.

The open loop singular value plot is shown in Figure
5.5. Of special note is the response between 0.5 and 3
rad/s, with three ripple-like spikes at 0.7, 1.5, and 1.9
rad/s. As will be seen, the controller is most active

controlling these spikes. The state space matrices are:

o,

[ -.161
-6.004
-.5822
-9.9835
-.4073
-3.982

0

0

H O O O O O

OO0 000~ OO0
O O O O Fr O O O
O O O+ OO OO
O 0O O 0 0O O O

O O O 0O 0 O O ¥
O 0O OO0 O 0O O

[o 000 .00055 .011 .00132 .018]

C.-E,_=
e 1" ooo0o0 0 0 0 0
c -p |0 000 .00055 .011 .00132 .018]
r 1 10000 0 0 0 0

€,=C={1000000 0]

D, =D,=10 1]
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. _[o

Deu =b2-=[0

[ 0 0]

0 0 0
.0064 0 0864
.00235 0 __1|.00235

Bo=Di=l 0713 of BB 0713
1.0002
1.0002 O .1045
.1045 0 [ .9955 |
| L9955 O

Looking at the form of the above matrices we see that
an equivalent block diagram would be like that in Figure
5.6. The w, disturbance is coming into the plant added to
u. The disturbance w, is coming into the output y.
Finally, the outputs e, and z, are being collected (through
the weighting matrix p,,) directly from the plant states.
Thus the plant output y is uncoupled from the "unmeasured”
e, and z, outputs that have -norm and 2-norm significance,
respectively. Note the absence of e, to place a penalty on

control effort expended on the o-norm side of the problem.

54




150 L T rrTIrTTe Ll mrrroerrey T rryrryrey i LI BRI EAS L T T Y Jr1T

100

50

dB
|
o
=)

-100

-150

-200

_260 S S WS i1 21211122 A1 doa gt 4 ttptii 1 LA 4 {Jrii Ll n il

10-3 10-2 10-! 100 101 102 103
Frequency (rad/s)
Figure 5.5 o-Plot of the Open Loop System

Because the H, control penalty is zero, the H, optimal
controller is difficult to calculate for this problem. 1In
{3), a y, of 0.12 was found for this problem using bisection
techniques. Closing the loop with the H,, controller gives
a T, with the characteristics shown in Figure 5.7. This
controller results in «, = 0.37856. Note that this
controller (Figure 5.8) has three distinct dips
corresponding to the 0.7, 1.5, and 1.9 rad/s ripples %n the
upper T,, o-plot. Figure 5.9 shows T, with this H,,.
controller. Here, Yy, = |T.)- = 1.3923. Because e, and 2z,
share the same weighting matrix (p., in Figure 5.5), the
lower T,, o-plot is very similar to the T, o-plot with the

same spikes and dips.
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Since the H, central controller is difficult to
generate for this problem, the B & H results served as a
starting point for the Mixed Solution. This worked very
well as long as y,;, was significantly greater than |T.}.ps-
The Mixed Solution would reliably start with p = 0.01 in
this case. The problem is that when the B & H problem
cannot be solved at a y near y,, the Mixed Solution has no
start point. The practical limit of about y = 0.27 was
found, below which the B & H solution wouldn’t work to start

the Mixed Solution.

5.5 Results

The Mixed Solution is clearly better than the B & H
solution as shown in Figure 5.10. As y, is approached, the
difference between the two solutions becomes large, while as
Y, is approached, the two converge to the same answer.
Table 5.1 shows the comparison for selected y,;,, levels.
Once again, care must be taken in such a table because |Tgl.
< Ypy While ) T..l- = Ymxs SO either y,, or y,;, must be adjusted

such that |T,[l. is the same.
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Figure 5.10 Comparison of Mixed and B & H Controllers

Table 5.1 Comparison of Mixed vs B & H

Mixed B & H

Ymix I Tl - I Tol 2 Yea 1 7el - 1T..1,

.27 .27 .8382 .2750 .27 1.1531

.40 .40 .5444 .4133 .40 .61521

.65 .65 .4281 .7046 .65 .4554

.75 .75 .4097 .8412 .75 .4288
1.00 1.00 .3865 1.329 1.00 .3931

- 1.37 1.37 .3786 6.81 1.27 .3786
1.3923 1.3923 .3786___ e 1.3923 .3786

Complete numerical data for the B & H curve can be found in
Appendix B.

Figure 5.11 shows the closed-loop Mixed Solution T,
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results for y,, = 0.27, 0.40, 0.65, 0.75, 1.00, and 1.37 as

well as the H T,, curve. In the figure, the arrow shows

20pt
decreasing y. The progression away from H,,, is readily
apparent. Note that as y progresses to lower values, the
major change in T, is at low frequency (below 0.8 rad/s),
and above 1.5 rad/s no change is discernable. In Figure
5.12, the closed-loop Mixed Solution T, results for the
same y levels are shown. Again the smooth progression away
from H,,. is evident. Note how low frequency energy is
being pushed out to higher frequencies as y is decreased.

In Fiqgure 5.13, the Mixed Solution controllers are shown for
the same y levels. Of note here is that the Mixed

controller has only two dips in the y = 1.00, 0.75, and 0.65

cases; the 1.9 rad/s dip disappears.

60




Magnitude

Magnitude

104

E T T TYTTTT -~ T T TTTTIY T T TTTTTY T T T T T ™ Ty
2 :
[ ! §
| -5
100 E i~ (H2opt shown solid) 3
- X_ N E
a | 1
C ~ 1
10-tE ‘ E
u Gamma Decreasing 3
102 3 E
103k 4
10~4¢ e
10-—5 bt L L 2adad 12 4121114 L1 .2 111188 L2ty 2 11t Ao J 4t 11
10-3 10-2 10-t 100 10t 102 103
Frequency (rad/s)
Figure 5.11 o-Plot of the Mixed T,
1
E
- l . (H2opt shown solid) %
100 E |
g \
10-! 3
s 1
102E
10‘SE
10+
10—5 S i a1 t1aal 14t pa3y 1Lt 11428 L4 oaday AR S RUTTY 1411
10-3 10-2 10-t 109 101 102 103

Frequency (rad/s)
Figure 5.12 o0-Plot of the Mixed T,,

61




100 T T T YT T T T

T rrrra
1111

Gamma Decreasing o

A

’

i‘:\‘g s (H2opt shown solid)

T
P

.

A

10-!

L3RRS

s
(WYt

10-25

Magnitude
T T TTrrm
L elagn

T
L

10-3

1

rrrrm
L1kt

10—4 I T Lo asasu W EERTTIN 4 Ao 2 a2 1t o111g
10-3 10-2 10-1 100 101 102 103
Frequency (rad/s)

Figure 5.13 o-Plot of the Mixed Controllers

Figures 5.14 and 5.15 show the closed-loop B & H
solution T, and T,, results for the same y levels. These
curves show the same progression away from H,,,. with
decreasing y, and show similar trend characteristics as
compared with the Mixed results. Figure 5.16 shows the B &
H controllers for these same y levels. It is very
interesting that the B & H controllers always possess three
dips, very similar to the H,,,, controller while the Mixed
controller, transitions to and from a three dip controller

depending on the y.
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Comparing the Mixed Solution and B & H solution at
specific |T,l. levels reveals some of the differences
between the two solutions. Starting with Figures 5.17 and
5.18, which show T.,, and T,,, respectively, at (T,l. = 1.37,
we see the two solutions are very close. Although it can
not be seen on these two plots, the Mixed T, has a slightly
greater bandwidth than the B & H T.,, while the Mixed T,, has
a slightly higher peak sigma value than the B & H T,,. Both
of these trends will continue as y 1is decreased. The
controllers shown in Figure 5.19 are almost identical and
both show the three dip phenomenon. Moving down to [T.f. =

1.00, Figure 5.20 shows how the Mixed T, has a larger
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bandwidth than the B & H T,,. As in Chapter 4, it will
become increasingly apparent that as y decreases, as the
Mixed Solution is making a "sharper corner"” to roll-off for
the x-norm side of the problem. 1In this figure, also note
the spike at 0.7 rad/s. As y gets lower this spike will
become increasingly important. Figure 5.21 shows that the
Mixed Solution is reducing higher frequency response of T,,
by increasing lower frequency response (at the 0.08 rad/s
hump). Note that the Mixed controller in Figure 5.22 has
transitioned to a two dip controller, while the B & H
controller still has an H,,,-like three dip controller.
Thus, the Mixed Solution is not dealing with the 1.9 rad/s
T,, ripple. 1In fact, the B & H controller always appears to
‘e a scaled H,,, controller. At |T.,l. = 0.65, Figure 5.23
shows the increasingly large T, spike at 0.7 rad/s. Note
that above 0.7 rad/s both the B & H solution and the Mixed
iolution are the same. Figure 5.24 shows the increasing
‘livergence between the two solutions for T,, between 0.03
.nd 10 rad/s. Figqure 5.25 shows the controller comparison
similar to the |T.l. = 1.00 controller. For |T.,l. = 0.4
vigures 5.26 and 5.27 show T, and T,, respectively. Note
that for T, the 0.7 rad/s spike nearly reaches |T.l.. Again
note the sharpness of the roll-off corner. 1In the T,, curve
we see the Mixed Solutions pronounced ability to reduce the
gain above 0.3 rad/s. This was achieved with only a small

increase in the maximum T,, gain. Figure 5.28 shows the
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controller comparison for the |T,|. level. Interestingly,
the Mixed controller has now transitioned back to three
dips, probably to deal with the emerging 1.9 rad/s T,
spike. At |T.l. = 0.27, the lowest level, the problem is
changing radically. 1In Figure 5.29, the T, 0.7 rad/s spike
has joined with the Mixed T, curve at the roll-off point
resulting in a very sharp roll-off corner. Meanwhile, the B
& H roll-off corner is quite rounded. For the first time,
higher frequency differences are apparent as well. This is
shown better in Figure 5.30. The T,, curve in Figure 5.31
tells us why the |T, i, are so different for these solutions
at this |T.l. level; the B & H T,, has a large gain step at
0.7 rad/s that the Mixed Solution just does not have. The B
& H solution seems unable to trade-off this large spike for
a slight increase in lower frequency gain. Figure 5.32
shows both controllers having the same three dip

characteristic as H Thus, we can conclude that the H,

20pt ®
overbound used in the B & H solution becomes increasingly
poor as y is decreased. This is especially evidenced by the

T 0.=.27 T,, plot, where the Mixed Solution is making shrewd

high/low gain trade-offs and the B & H solution is not.
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Chapter VI. Two Exogenous Inputs Two Exogenous Outputs

6.1 Problem Synthesis

This system has two exogenous inputs and two exogenous
outputs (2120). In standard form, it is represented as in

Figure 6.1.

d —» —— 3 ¢
wW——p P L
S
u y

K [

Figure 6.1 2120 Standard Form

Thuz, the mixed problem is

inf i1T..0. subject to |T.l- = v

K stabilizing
so that we are optimizing noise performance in the T,
transfer function while we are concerned about robustness in
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the T, transfer function. T,, for example, could be
associated with command following error, while T,, could be

associated with plant response to noise.

6.2 Background

There are currently no other techniques to handle a
2120 system. The Mixed Solution is the only real solution
in this case. It is possible to generate an H, central
solution based only on T,, but this is not really mixed at
all since T,, is not considered in the problem. The only
true comparisons in this case are with the H,,. and H,,,

solutions at each end of the trade-off.

6.3 Description

The B & H system in Chapter 5 can be readily extended
to a 2120 problem with a block diagram as in Figure 6.2.

Manipulating the state space we have

“.‘zAX+B(“+pd1 d, +p,, W)

Y=Cx*+Paz d,* P, W,

e,
e;

PerX
PezU

e=

, <1 _|Pz1X
: [Z] [pzzu]
or
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Figure 6.2 System Block Diagram

The A, B,, B,, C,, C,, C,, D,, and D, matrices are as in |

Chapter 5, while ‘

Thus, we have disturbances entering the system at the

plant input and output. Robustness is being measured with
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respect to some plant states different than the measured
states. Noise is also coming into the system at the plant
input and output, with performance being measured with
respect to some plant states different than the measured
states. All o the p weighting matrices are non-zero in
this example.

The H,,. and H,,. controllers are as shown in Figure
6.3. Note the large gain increase in the H,, controller
above 1 rad/s in contrast to the H,,.’'s roll-off. These
controllers result in y, = 0.12015, y, = 1.3923, and x, =
0.3786. Figure 6.4 shows the resulting closed loop T,, and
Tes With the H,,, controller. Since this is the T,-~H,,,
r~ntroller, |T,,|, is minimized here, but T, is showing
similar characteristics with this controller. Figure 6.5
shows the resulting closed loop T, and T,, with the H,,.
controller. Here we see the typical flat o (T.) curve.

Note that |T,.}, is going to infinity.

6.4 Results
The |T.li. versus |T,, trade-off is clearly shown in

Figure 6.6. This data is also displayed in Table 6.1.
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Table 6.1 Mixed Solution to 2120

Y I Teal - 1Tl
.27 .27 .8381
.4 -4 .5444
.7 .7 -4180
1.1 1.1 .3824

Figure 6.7 shows the controllers transitioning from
H,,. to H,,. with the arrow pointing toward decreasing y.
Note the large change from y = .27 to y,. In Fiqure 6.8, T,
is shown progressing to the infinite bandwidth H,,, solution
as y is decreased. Note that while |T,}. is going down, the
minimum singular value is going up. Thus, a trade-off is

being made here, as well as between the 2-norm and x-norm.

81




In Figure 6.9, T,, is shown progressing away from the H,,,
solution as y is decreased. Note that the bandwidth
increases here as y is decreased.
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Figure 6.7 o-Plot of the Mixed Controllers
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Looking at the y = .27 case, Figure 6.10 shows T,, and
the Mixed controller (shifted up two decadés for clarity).
The controller peaks at .9 and 1.8 rad/s can be seen to
correspond with dips in the maximum T,, singular value at
those frequencies. Notice the similarity the controller has
to the minimum T,, singular value plot, caused in this
problem by the way the state and control penalties are
structured. Figure 6.11 shows T,, and the Mixed controller,

but the relationships here are not so clear. Figure 6.12

and 6.13 show similar characteristics for y = .7.
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Thus, the Mixed Solution provides complete visibility

into the x-norm versus 2-norm trade-off for the 2I20 system.

This practical example again showed the solution to be on

the ®-norm boundary where T . = y.
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Chapter VII. Conclusions and Recommendations

7.1 Summary and Conclusions

The objective of this thesis was to apply a newly
developed nonconservative mixed optimization solution to
several example problems and compare this solution to the
best previously available solutions. The final measure in
the comparison was the 2-norm versus x-norm trade-off curve.

In Chapter 2, various aspects of control theory and the
role of H, and H, theory were discussed. Chapter 3 covered
the procedure and analysis techniques required to obtain a
Mixed Solution.

The 1110 example was looked at in Chapter 4. The
comparison in this case was done between the Mixed and
H, central solutions for a third order SISO system. The
example showed that the Mixed Solution does converge to the
H,ope Ssolution at y, and to the H,,, solution at y,. For y, <
Y < Y., the Mixed Solution is superior to the H, central
Solution because of the latter’s conservative overbound. 1In
this specific example, the difference peaked at the mid-
range y, and was approximately 5 percent of the 2-norm.

A 1120 example was covered in Chapter 5. For this
system, the Mixed Solution was compared with the Bernstein &
Haddad Solution for an eighth order system. This particular
example problem came from the original Bernstein & Haddad
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paper demonstrating their solution and included the
limitation that the H, control penalty must be zero. The
example showed that both the Mixed Solution and the
Bernstein & Haddad solution converge to the same (H,y,)
solution at y,. For y < y,, the Mixed Solution is superior
to the Bernstein & Haddad solution, again because of the
latter’s conservative overbound. As in the 1I10 comparison,
the hallmark of the Mixed Solution appears to be the sharper
corner to the roll-off that it makes on the T, plot.

Chapter 6 looked at a 2I20 eighth order example system.
This system was chosen as an extension of the 1120 Bernstein
& Haddad system because of its practical motivation
(actuators, sensors, and spinning masses). No comparison to
previous results was possible in this case, because no other
solution exists to this problem. The example again showed
again that the Mixed Solution converges to the H, . or H, .,
solution at their respective y’s. The example clearly

showed the w-norm versus 2-norm trade that is possible.

7.2 Recommendations

Practical applications still need to be looked at in
earnest. Several of the practical examples that were looked
at could not be done with the software code used in this
thesis, because either the problem would not numerically
start, or once started would not converge. It is not known

whether this is related to modeling, numerics, or software,
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but this is definitely an area of further study.

As an adjunct to this, further refinements to the
current numerical algorithm might help its robustness and
speed. Perhaps a whole new algorithm could better find the
solution.

For the current algorithm, finding a start point for a
system greater than 1I10 is very time consuming because of
numerous points that should work, but do not. A reliable
method of finding start points would be a worthwhile
investment.

Finally, the Mixed Solution has a large number of
tunable parameters. The practical techniques of using these
parameters to achieve desired results still needs to be

investigated.
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Appendix A: Selected Software Items

This appendix contains the PRO-MATLAB user written
routines utilized in this thesis and an example of an
input file to the Fortran based DFP program.

BH.M algorithum for solving the Bernstein and Haddad

problem:

g2=1/(gam*gam);
a=am;

b=bmn;

c=cm;

vl=dl*dl’;
v2=d2*d2’;
rl=el’*el;
r2=e2’'*e2;
rlinf=elinf’*elinf;
sig=b*inv{(r2)*b’;
sigbar=c’*inv(v2)*c;

%

% solve for g
3

f=a’;
g=-({g2*rlinf-sigbar);
h=v1;
g=are(f,g,h);
3

$initialize p
3

$p=eye(n);
p=pchest;

%

$ iterate between ghat and p equations
$

error=1;

while error>.001

%
f=(a+g2*q*rlinf-sig*p)’;
g=-g2*rlinf;
h=g*sigbar*gqg;
ghat=are(f,g,h);

%
f=(a+g2*(g+ghat)*rlinf);
g=sig;

h=rl;

pold=p;

p=are(f,qg,h);




%
error=norm(p-pold,*fro’)
$

end

disp(’converged’)

% check answers

$

if abs{g’-q)>»10°(-5)

disp{‘q not symetric’)

end

%

if min (eig(qg)) < O

disp('q not positive definite’)
min(eig(q))

end

%

if abs(gqhat’~gqhat)>10°(-5)
disp('ghat not positve definite’)
end

%

if min(eig(ghat))<O0

disp('qhat not positive definite’)
end

%

if abs(p’-p)>10°(-5)

disp(’p not symmetric’)

end

%

if min (eig{(p))<0

disp(’p not positive definite’)
min(eig(p))

end

%

% compute the controller
$

bec=g*c’*inv(r2);
cc=—inv(r2)*b’'*p;
ac=a+b*cc-bc*c+g2*g*rlinf;
dc=0;

%

%compute cl system

(a,b,c,d]=1ftf(pfwd,[8,2,1,4,1]),ac,bc,cc,dc);
%

$compute norms

3
h=mynorm(a,b,c(1:2,:),zeros(2,2))
hinf=h(2)
h=mynorm(a,b,c(3:4,:),zeros(2,2))
h2=h{(1l)




BLACK.M algorithum for solving the Bernstein and Haddad
problem using the K. Black technique:

g2=1/(gam*gam);
a=am;

b=bm;

c=cm;

vli=dlxdl’;
v2=d2*d2’;
rl=el’*el;

r2=el’ *e2;
rlinf=elinf’*elinf;
sig=b*inv(r2)#*b’;
sigbar=c’*inv(v2)*c;
%

% find gam = infinity p and ghat
%

f=a;

g=sig;

h=rl;
pzero=are(£f,qg,h);
zZ=a-sig*p;
x=sigbar;
ghatz=1lyap(z,x);

%

% solve for g

f=a’;
g=-(g2*rlinf-sigbar);
h=v1l;

g=are(f,g,h);

%

% iterate between ghat and p equations
%

p=pzero;

ghatk=qhatz;

error=1;

k=0;

while error>.000001

%

k=k+1

%

f=(a+g2*(g+qhatk)*rlinf);
g=sig;

h=rl;

pold=p;

p=are(f,g,h);

%
z=a-sig*p+g2*(g+ghatk/2)*rlinf;
x=g*sigbar*qg;

ghatk=1lyap(z,x);
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$
error=norm(p-pold,’fro’)

$

end

disp(’converged’)

$

: check answers

if abs(qg’'-g)>10"(-5)

disp(’'q not symetric’)

end

%

if min (eig(q)) < 0

disp(’q not positive definite’)
min(eig(qg))

end

% .

if abs(ghatk’-ghatk)>10° (-5
disp(’qhat not positve definite’)
end

%

if min(eig(ghatk))<0
disp('ghat not positive definite’)
end

%

if abs(p’'-p)>10°(-5)

disp(’'p not symmetric’)

end

%

if min (eig(p))<0

disp(’p not positive definite’)
min(eig(p))

end

%

% compute the controller

%

be=g*c’*inv(r2);
cc=-inv(r2)*b’*p;
ac=a+b*cc-bec*rc+g2*g*rling;
dc=0;

%

$compute cl system

$
la,b,c,d)}=1ftf(pfwd,[8,2,1,4,1],ac,bc,cc,dc);
%

$compute norms

h=mrynorm(a,b,c(1:2,:),zeros(2,2))
hinf=h(2)
h=mynorm(a,b,c(3:4,:),zeros(2,2))
h2=h(1)




BHD.M algorithum for solving the dual of the Bernstein
and Haddad problem:

g2=1/(gam*gam});
a=am;

el=ce;

c=Cy;

dl=bw;

d2=dyw;

dlinf=bd;
d2inf=dvd;

b=bu;

e2=deu;
viinf=dlinf=*dlinf’;
vli=dlxdl’;
v2=d2*d2’;

rl=el’ *el;
r2=el’'*el2;
sig=b*inv(r2)*b’;
sigbar=c’*inv(v2)*c,
%

% solve for g

gZ*vllnf sig);

Wononn

oot
Aokt

initialize p

oaxoo\oo\mn T Hh o

$p=eye(n);
p=pchest;
%

% iterate between ghat and p equations
%

error=1;

while error>.001

%

f=a+g2*vlinf*g-p*sigbar;
g=-g2*vlinf*q;

h=q*sig*q;

ghat=are(£f,g,h);

k3
f=(a+g2*vlinf*(g+ghat))’;
g=sigbar;

h=v1;

pold=p;

§=are(f,g,h);
error=norm(p-pold,’'fro’)
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%

end
disp(’converged’)
%

% check answers

%

if abs(g’-g)>107(-5)

disp(’q not symetric’)

end

%

if min (eig(q)) < O .
disp(’q not positive definite’)
min(eig(qg))

end

k]

if abs(ghat’'-qhat)>107(~5)
disp(’qhat nct positve definite’)
end

5

if min(eig(ghat))<0
disp(’ghat not positive definite’)
end

%

if abs(p’-p)>107°(-5)
disp(’p not symmetric’)
end

%

if min (eig(p)l}<0

disp(’p not positive definite’)
min(eig(p}))

end

%

% compute the controller

K

bec=-p*c’*inv(v2);
cc=inv(r2)*b’'*qg;
ac=a+bc*c-b*cc+g2*vlinf*q;
dc=0;

%

$compute cl system

3

[a,b,c,d]=1ftf(p2,[3,2,1,1,1],ac,bc,cc,dc);
%

¥compute norms

%

h=mynorm(a,b(1:6,1),c,d);

hinf=h(2)

h=mynorm(a,b(1:6,2),c,d);

h2=h(1)




This is an example of an input file to the Fortran based
DFP program. It contains all dimensions, state space
matrices, numerical parameters, and an initial controller
guess.

THIS IS THE 1I.file FOR THE DIRECT METHCD

THE SISO MIX NUMBER 1 PROBLEM GAMMA 3.5 MU .000000
THE DIMENSIONS ISTATE,NU,NY,ND,NE,NW,NZ
8 1 1 2 2 2 2

THE PARAMETERS GAMMA AND MU (2D11.6)

0.730D0+00 0.100D+00
THE TOLERANCES OF: 1-D SEARCH, CHECKSTOP (2Dl1.6)
0.100D-03 0.100D-04
THE A MATRIX (8F8.4)
~-0.16100E+00 0.10000E+01 0.00000E+00 "~ 0.00000E+00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
-0.60040E+01 0.00000E+00 0.10000E+01 0.00000E+00
0.00000E+00 0.00000E+00 0.0000G0E+0Q0 0.00000E+00
~-0.58220E+00 0.00000E+00 0.00000E+00 0.10000E+01
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
-0.99835E+01 0.00000E+00 0.00000E+00 0.00000E+00
0.10G00E+01 0.00000E+00 0.00000E+00 0.00000E+00
-0.40730E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.10000E+01 0.00000E+00 0.00000E+0Q0
-0.39820E+01 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00Q 0.00000E+00 0.10000E+01 0.00000E+00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 0.00000E+00 0.10000E+01
0.00000E+00 0.00000E+00 0.00000E+00 C.00000E+00
0.00000E+00 0.0CO00E+00 0.00000E+00 0.00000E+00
THE BU MATRIX AS BU TRANSPOSE
0.00000E+00 0.00000E+00 0.64000E-02 0.23500E-02
0.71300e-01 0.10002E+01 0.10450E+00 0.99550E+00
THE BD MATRIX AS BD TRANSPOSE
0.00000E+00 0.00000E+00 0.64000E-02 0.23500E-02
0.71300E-01 0.10002E+01 0.10450E+00 0.99550E+00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.C00000E+0Q0 0.00000E+00 0.00000E+00 0.00000E+00
THE BW MATRIX AS BW TRANSPOSE
0.00000E+00 0.00000E+00 0.64000E~-02 0.23500E-02
0.71300e-01 0.10002E+01 0.10450E+00 0.99550E+00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+CO 0.00000E+09 0.C0000E+00
THE CY MATRIX
0.10000E+01 0.00000E-400 0.00000E+00 0.00000£+00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000£+00

A=7




THE

THE

THE

THE

THE

THE

DOoOO0OOODOOOO

-0

CE MATRIX .

0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.55000E-~03 0.11000E-01 0.13200E-02 0.18000E-01
0.00000E+00 0.00000E+00 0.0C0V000E+00 0.00000E+00
0.00000E+00 0.00000E+00 G.u0000E+00 0.00000E+00
CZ MATRIX

0.00000E+0Q0 0.C0000E+0QQ 0.00N00E+00 0.00000E+0Q
0.5500CE-03 0.11000E-01 0.13200E-02 0.18000E-01
0.00000E+00 0.00000E+00 0.00000E+00 0.0000CE+00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00Q
DYD MATRIX

6.0000vE+QOQ 0.10000E+01

DYW MATRIX

0.00000E+0Q0 0.10000E+01

DEU MATRIX

0.00000E+00

1.00000E-04

DZU MATRIX

0.00000E+0Q0

0.10000E+01
THE AC MATRIX (COLUMNS 1 - 4)

.17045507697D+01 0.1000C¢000000D0+01 0.00000000000D+00
.72062271373D+01 0.0000C000000D+00 0.10000000000D+01
.97874078270D+01 0.51082188294D-02 0.69041782133Dp-02
.15856634151D+02 0.1875€741014D-02 0

.15640813718D+02 0.56908750396D-01 O

.12892587618D+02 0.7983:1882393D+00 O

.63547130042D+01 0.83407635572n-01 0

.33964959280D+01 0.79456747572p+00 O

THE AC MATRIX (COLUMNS 5 - 8)

.19953075890D-02
.22716649979D-02
.24804614306D-01
.99793142253D+00
.39626920718D+00
.58756954262D+01
.60422527221D+00
.58592457757D+01

THE BC MATRIX

.15435507697D+01
.12022271373D+01
.91953201896D+01
.58695035337D+01
.15123359258D+02
.73653352902D+01
.61932664252D+01
.18585048340D+01

THE ¢C MATRIX
.15449433389D+01

THE CC MATRIX

(COLUMNS
~0.58602951070D+01 -0.110124122311D+03 -0.13512533653D+02 -0.28042913911D+C3

-0.

0.3990€£151780D-01 O.
0.45423299958D-01 O
-0.

44703834031Dp+00 -0
-0.2335¢553586D-01 -0
6378£925285D+01 -0
-0.10984769656D+03 -0
~0.11283545485p+02 -0
-0.10955472754D+03 ~0

(COLUMNS 1 -
0.79812919209D+00

5 -

4)

8)

A-8

47887382136D-02
45£19959949D-02

0.10767778458D+01 -0.278400763860+C¢C

0.000000C0000D+57
0.000000000C0CD~3C
0.99321823511D+C0C
.25351279377D-02 ~-0.65424179507D-C3
.76916860407D-01 -0.19849974463Dp-G!
.10789936014D+01 -0.27845644401D+("
.11273228489D+00 -0.29092879823p-0!
.10739233455D+01 -0.27714796042D+0G0

0.65300975640D-01
0.74345399931p-0!
.1 5536356870D-01 ~-0.73278478339D+7"
.34977755986D-02 -0.38690133929D-"1
.90654244797D+00 -0.12088672144D+0=2
.12477369584D+02 -0.17994886255D+01%
.13849144072D+01 -0.17484681044D+C*
.13440824044D+02 -0.17946852788D+03




Table B.1

Yo

Appendix B.

Data

CENTRAL H, RESULTS (1I10)

<

NN N NN NN NN DNDDNDNDNNDNDNDNDND NN NN

iTedl, | ITedl.
.1426(291.55|2.1426
.1500{27.601[2.1500
.1600/18.146|2.1599
.1700} 14.55 [2.1698
.1800{12.526(2.1796
.1900[11.190(2.1894
.2000[10.225(2.1991
.2100|9.4877|2.2088
.2200(8.9018{2.2184
.2300(8.4223]2.2280
.2400(8.0211]2.2375
.2500{7.6792]2.2470
.2600[7.3838(2.2564
.2700[7.1254|2.2658
.2800[6.8971]2.2751
.2900|6.6937 [2.2844
.3000/6.5111]2.2936
.32 ]6.1961{2.3119
.34 [5.9336(2.3299
.36 |5.7109(2.3478
.38 |5.9193(2.365%
.40 |5.3527(2.3830
.42 |s5.20622.4003
.44 |5.0764(2.4174
.46 |4.9605|2.4343
.50 |4.7625(2.4675




Table B.1l cont.

y | ITedl, | ITedl.
2.55| 4.5629 2.5080
2.60]4.4023 2.5474
2.65(4.2704 2.5856
2.70|4.1602 2.6228
2.75(4.0671 2.6589
2.80|3.9874 2.6939
2.85(3.9186 2.7280
2.90|3.8586 2.7610
2.95{3.8061 2.7931
3.00)3.7598 2.8243
3.10]3.6821 2.8840
3.20{3.6198 2.9403
3.30[3.5691 2.9935
3.40(3.5274 3.0436
3.50]3.4926 3.0909
3.70[3.4386 3.1779
3.9013.3992 3.2555




Table B.2 MIXED RESULTS (1110)

4| _ITedl, | ITedl
Y, 2.1426
2.15 27.6012 2.1502
2.16 17 .9685 2.1600
2.17 14.3460 2.1701
2.18 12.2802 2.1800
2.19 10.9172 2.1900
2.20 9.9325 2.2000
2.21 9.,1785 2.2100
2.22 8.5782 2.2200
2.23 8.0863 2.2300
2.24 7.6743 2.2400
2.25 7.3231 2.2500
2.26 7.0209 2.2600
2.27 6.7576 2.2700
2.28 6.5193 2.2800
2.29 6.3104 2.2900
2.30 6.1423 2.3000
2.32 5.8002 2.3200
2.34 5.5319 2.3400
2.36 5.3050 2.3600
2.38 5.1100 2.3800
2.40 4.9425 2.4000
2.42 4.7945 2.4200
2.44 4.6645 2.4400
2.46 4.5489 2.4600
2.50 4,3536 2.5000
2.55 4.1601 2.5500
2.60 4.0075 2.6000
2.65 3.8850 2.6500
2.70 3.7852 2.7000




Table B.2 cont.

Y ITedl, | ITedl.
2.75|3.7030|2.7500
2.80|3.6345(2.8000
2.8513.577012.8500
2.9013.5280]2.9000
2.95|3.4863(2.9500
3.0 |3.4506|3.0000
3.1 13,3936[3.0999
3.2 |3.3520|3.1998
3.3 {3.3203}3.3000
3.4 13.2969{3.4000
3.5 (3.2798|3.4999
3.7 |3.2594(3.6999
3.9 |3.2502|3.9273




Table B.3 B & H Results (1120)

uTew|~ ITszZ B
.2371]1.7908
.25741{1.3401
.27761.0675

.2977}1 .0936
.3179| .8011
.3382 .7327
.35851 .6837
L3787 .6464
.3988| .6168
.4188| .5926

.4386| .5722
.4582| .5548
.4776 | .5397
.4967{ .5263
.5156 | .5145
.5342}1 .5039
.5525| .4944
.5706 | .4858
.5883( .4781
.6058}1 .4710
.6411} .4583
.6478] .4561
.6488| .4558
.6526 | .4546
.6593( .4525
.6631| .4513
.6640| .4510
.6677 | 4499




Table B.3 cont.

1Tl | 1T,
.6745] .4479
.71191].4378
.7684\].4250
.82201.4151
.87121.4075
.92701].4004
.9750)].3954
.0254{ .3910
.06776] .3880
.1099|.3855
.1481] .3836
.1839].3821
.21371.3811
.2400] .3804
.2631] .3799
.2830].3795
.3002]|.3792
.3140f .3790
.3268].3789
.3376| .3788
.3466 .3787
.3542(.3787
.3606| .3786
.3659]| .3786
.3704;.3786
.3741|.3786
.37°721.3786
.37977|.3786
.3819| .3786
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